
Journal of Mathematical Chemistry 20 (1996) 351-364 351 

A nondiagonal quasidegenerate fourth-order 
perturbation theory 

Kathleen Kuhler  and Mark  R. Hof fmann  

Chemistry Department, University of North Dakota, Grand Forks, 
North Dakota 58202-9024, USA 

Received 21 March 1996; revised 22 July 1996 

A canonical quasidegenerate Rayleigh-Schr6dinger perturbation theory, correct 
through fourth order in the energy, is explored for a block-diagonal unperturbed 
Hamiltonian. The theory is developed completely within a Lie Algebra in Hilbert space. 
Explicit equations for n-particle transition elements in terms of solutions of simultaneous 
linear equations are presented. A two-dimensional anisotropic anharmonic oscillator is 
used to provide numerical results. The perturbation theory is shown to be stable under 
small separation of model and complement spaces. An iterative variant of the fourth- 
order perturbation theory is introduced; the iterative variant is related to the non-itera- 
tive one in much the same way as nondegenerate coupled cluster theories are related to 
nondegenerate perturbation theory. The quasidegenerate coupled cluster theory appears 
to be stable in the presence of multiple intruder states. 

1. Introduction 

The realization of  ever more  efficacious approximation methods  for solutions 
of  the t ime-independent  Schr6dinger equation remains an important  goal in the 
physical sciences. Quasidegenerate per turbat ion theories (QDPT),  including itera- 
tive approximations of  the coupled cluster variety, remain an especially lucrative 
methodology.  For  recent reviews of  QDPT,  see refs. [1] and [2]. Quasidegenerate 
per turbat ion theories have been developed and successfully applied to a number  of  
problems in nuclear  [3-6], atomic [7-9] and molecular  [10-20] physics. 
Nonetheless,  difficulties remain with routine application of  QDPT,  especially with 
the ability to describe reliably excited states and to treat weakly quasidegenerate 
systems on an equal footing with strongly quasidegenerate systems. 

In this paper,  we present a nondiagonal Rayleigh-Schr6dinger Q D P T  correct  
th rough four th  order  in the effective Hamil tonian that  uses a novel intermediate  
Hamil tonian  to avoid numerical  instabilities due to so-called intruder states [3]. 
The matr ix  formulat ion is described herein; i.e., explicit equations are given in 
terms of  n-particle transition amplitudes. An iterative approximation to the fourth-  
order  effective Hamil tonian,  that  is similar to the relation that  nondegenerate  
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coupled cluster methods have to nondegenerate perturbation theory, is also pre- 
sented. We investigate numerically characteristics of the proposed theories with 
calculations on coupled, anisotropic anharmonic Hamiltonians of the form 

½kxSd lky2 [ l ( x , y ) = ~ + ~ p y +  +z  y +a2Y +b24,  (1) 

which may also, in coordinate representation, be written as 

[ 1,1 
= t 

a 7 1 1 ( b ~ 4 }  " 
+ ~: (1 + 3')(1 - 3')~r/4 (1 + 3')2 \k/32J (2) 

The anisotropy, % and mean force constant, k, are defined through kx = k(l  + ,),)2 
and ke = k(1 - ,),)2; the unit of energy is defined through the mean frequency 
w = V / - ~ .  The length scales are defined by g = kv/k-~xm/h,/32 = k x / m / h  , and 
/3 2 = v/km/h; the scaled coordinates are ~ =/3xX and 77 =/3yy. 

Quasidegenerate methods are based on the observation that an exact eigenfunc- 
tion of the Hamiltonian can be generated from a reference function in a subspace of 
the full Hilbert space by the action of a wave operator [21], 

I ~ )  = a l ~ )  • (3) 

The domain of the wave operator partitions Hilbert space into two subspaces: the 
model space and its orthogonal complement. The relation of the model space wave- 
function and the exact wavefunction given in eq. (3) implies a similarity transfor- 
mation of the Hamiltonian; i.e., 

H ~ff = a - I l i a .  (4) 

The effective Hamiltonian acts on a function in the model space to produce the 
exact energies, 

HeSf l~)  = (5) 

The reference functions ofeqs. (3) and (5) have been referred to as the "bonne func- 
tions" (cf. refs. [22-24]). The bonne functions are, of course, expressible as a linear 
combination of model space basis functions: I ~ )  = Y~a Cffl~ot)" 

Eq. (4) may be rewritten as 

a H  esf = H a .  (6) 

In order to solve the above equation, it is convenient to introduce the projector on 
the model space, 

P =  ~-'~ I%)(%1 (7) 
aEP 
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and the projector on the complement space, 

Q =  (8)  
nEQ 

The summation in eq. (7) is over the d-dimensional subspace 79 of Hilbert space that 
is used to define the model space; in eq. (8), the summation is over all of Hilbert 
space complementary to subspace 79. As demonstrated by Shavitt and Redmon [13] 
(also see refs. [23,24]), eq. (6) rearranges to 

HDf~x = -Hx f~D + f~XHeD ff , (9) 

where the block diagonal and off-diagonal parts of the Hamiltonian and wave 
operator have been defined by 

and 

AD = P A P  + QA Q (10a) 

A x  = P A Q  + Q A P .  (10b) 

Eq. (9) may be considered the fundamental equation for developing any effective 
Hamiltonian. 

2. Quasidegenerate perturbat ion theory 

Several major variants of QDPT have been defined [13,25,26]; our development 
is of the canonical formulation variety. The canonical formulation is most conveni- 
ently expressed in terms of the logarithm of the wave operator, 

= (11) 

The canonical variant of QDPT is defined by the requirement that the block diago- 
nal part of the logarithm of the wave operator vanish, i.e., Go = 0, and that 
Gx = - G t .  The logarithm of the wave operator and the effective Hamiltonian may 
be expanded as power series, i.e., 

G = G (1) + G (2) + G (3) + . . .  (12) 

and 

H eft = S 0 -~- W(D l) "{- W (2) -'J- W(D 3) -{- W(D 4) "+- . . . .  (13) 

Substituting the perturbative series into eq. (9) and using a power expansion of e 6 
yields the individual order perturbation equations [13]. 

Our nondiagonal quasidegenerate perturbation theory is developed from an 
unperturbed Hamiltonian with the following structure: 

Ho = P H P  + QiUQ1 + Q2HQ2 + . . . .  (14) 
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In eq. (14) the complement space, Q, is further partitioned by the minimum number 
of mappings that a set of functions are removed from the model space; for example, 
for any function, [epq2 ), in the Q2 subspace and function [ePa) in 79, (q?alHlq?q2) : O. 
Fig. 1 illustrates the structure of the Hamiltonian, with crosshatched regions 
included in H0, striped regions containing potentially nonzero matrix elements, 
and all blank regions rigorously zero. A perturbative evaluation of the eigenvalues 
and model space eigenvectors of the Hamiltonian may now be developed from the 
above specified H0. 

Computational implementation of the proposed quasidegenerate perturbation 
theory could be realized through explicit formulas involving model space matrix 
elements of products of creation and annihilation operators, or, equivalently, by 
diagrammatic techniques. An alternative approach is the matrix formulation 
[12,21]: the required transition matrix elements of G0) can be obtained as 

~-~(~nln l~m)(~mla(1) l% ) - ~-~(~n[a(1)l~c)(~cla]%) 
m c 

: - ( ~ n J n l % ) .  (15) 

The first summation is over the set of all, the previously discussed, no-more-than- 
singly-excited basis functions (Q0; the second summation is over all model space 
functions. The set of necessary bra functions, I~n), is a basis of Q1. 

The second-order correction to the effective Hamiltonian can be expressed 
directly in terms of the G 0) matrix elements from eq. (15) and Hamiltonian matrix 
elements, 

P 

q 

Q2 

Q. 

P Q2 I Q3 

S 
/ 

Fig. 1. 



K. Kuhler, M.R. Hoffmann/A nondiagonal quasidegenerate perturbation theory 355 

(3ol = ½(eal[Ux, a )lle ) 

= ½ - (%lG(1)l%)(%lSl%)}. 
d 

(16) 

In eq. (16), the summation is restricted, without approximation, to complement 
space basis functions that are no-more-than-singly excited relative to either model 
space function I(I)a) o r  I(I)b). 

Though our complement space basis functions are not eigenfunctions of H0, it 
proves convenient to rotate our basis in the model space so that the model space 
basis functions are eigenfunctions of H0: 

H01(i)0 ) 1 0  = Ea [(I)~). (17) 

The diagonal part of the Hamiltonian is related to the zero-order Hamiltonian by 

HD = Ho + VD, (18) 

where VD = Q1HQ2 + Q2HQ1 + . . . .  Hence, H0 and HD are identical in the model 
space, but not in the complement space. With the rotated basis in the model space, 
eq. (15) takes on the simpler, and more computational tractable, form, 

( ( % l U l l , , ) -  1 (1) 0 5,,,.E~,)(~.,IG I~a)=-(~ . lUl~°a) .  (19) 
mEQi 

Neither eq. (16) nor (19) is surprising, and may be seen to be essentially multirefer- 
ence CEPA-0 equations [15,27,28]. While the purpose of the present work is to 
develop higher-than-second-order, nondiagonal, perturbation theories, it ought to 
be noted that substantial improvements in accuracy can be achieved in second 
order by more sophisticated treatments [29-32]. 

The equations for the second-order correction to the logarithm of the wave 
operator, G (2), are developed similarly to the first-order correction. One 
obtains 

1 (2) o (<¢'.IHI'I ' , ,)-6m.E~)(~.,IG I ~ )  
mEQ2 

= - ( 2 0 )  

kEQl 

where the Iq,,) E Q2. However, one also obtains the result that the third-order cor- 
rection to the effective Hamiltonian is rigorously zero with our partitioning, i.e., 

0 (3) 0 ((I)al W~ lob) = 0. It ought to be noted that the second-order correction to the 
wavefunction is not equal to zero and, if calculation of fourth- or higher-order cor- 
rections to the effective Hamiltonian are required, the second-order corrections to 
the wavefunction must be calculated. Eq. (20) represents a substantial computa- 
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tional effort comparable to configuration interaction CISDTQ or coupled cluster 
CCSDTQ [33] approaches to molecular physics problems. 

Evaluation of the equation for the third-order correction to the wave operator 
in a basis gives 

1 (3) 0 

m~Q~eQ3 

= -- Z ((~nlgDl(bq)(~qlG(2)l(bO) 
qE Q2 
1 

cE79 rnEQi 
2 

CEP mEQI 

1 ~-~j(i),lG(1)lO0) ~ ((bOlG(l)lOm)(ePmlg[~O). (21) 
3 c~p m~Q~ 

The summation over complement space functions on the left hand side are rigor- 
ously over the union of QI and Q3 subspaces. The ((I)n I are also rigorously restricted 
to the union of QI and Q3 subspaces; consequently, the above simultaneous equa- 
tions decouple into Q1 ® Q1 and Q3 @ Q3 blocks. Model space matrix elements of 
the fourth-order correction to the effective Hamiltonian 

WD (4) ----- ~[Ux,  G(x 3)] - ~ 4  [[[Ux, G(x)], G(x)], G(x 1)] (22) 

can be written, after some algebra, as 

((I)°al W(D4) 1¢ ° ) 

1 = -~ ~ {(~mlgl~°)(cbmlG(3)lcb°) + (~m[G(3)[~°a)((I?mIHI~O)} 
mEQI 

1 
+ i5 ,, • ,~c, ~ (~.,IG(~)IC'°>(C'.,IG(~)I'~°) 

cE'P rnEQl 

-4- ~ ~ ((~01W(D2'[(~ O) m~l(f~mIG(l'l(~Oa) (f~mlG(l'l(~ 0 ) 
1 +~ ~ (¢'.,IG(')l':I'°a)y~J~,,,IG(')l~° ) ~ (@klgl@°)(@,lG(1)l@°) 

rnEQi cEP kEQI 
1 +~ ~ (¢'.,IG(1)1~°)y~Ja,,,,IG(l)l¢,° ) ~ ('~lHl~°c)(~klG(~)l~'°.). 

rnEQ1 cEP kEQ~ 

(23) 

Examination of eq. (23) shows that the Q3 matrix elements of G (3) are not needed 
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in fourth order in the effective Hamiltonian; hence, only solution of the Q1 ® Q~ 
block ofeq. (21) is required. 

3. Intermediate effective Hamiltonians 

The concept of partitioning an effective or model HamiRonian further into a sub- 
space of interest and one that is uninteresting for the problem at hand has been pro- 
posed already by L6wdin [21]. This partitioning often can alleviate the intruder 
state problem [3]; intruder states are states outside the model space that have energy 
eigenvalues within the range of those of the model space. Partitioning has also pro- 
ven to be computationally efficacious; the most computationally intensive parts of 
the construction of the effective Hamiltonian is then limited to the usually small pri- 
mary block. Partitioning has been used in several formulations of quasidegenerate 
or multireference perturbation theories [8,14,34]. Malrieu and Daudey [8] intro- 
duced a form of partitioning in which m exact energies and projections of m exact 
eigenvectors of the d-dimensional model space are obtained at convergence; though 
their introduction of the phrase intermediate Hamiltonian originally referred to 
their particular form of partitioning, it has now found more general use. The inter- 
mediate Hamiltonian we propose for use with our quasidegenerate perturbation 
and coupled cluster theories is not of the Malrieu and Daudey type, and may be seen 
to be closer to that produced by the buffer space of Kirtman [14]. 

Our intermediate Hamiltonian is constructed by further division of the model 
space functions into a so-called primary subspace, 7:'0, whose eigenvalues and 
eigenvectors are of interest, and a buffer subspace, 791, that is not of any particular 
interest. With a proper choice of primary states, the energetically high-lying func- 
tions in the model space are not perturbatively (or iteratively, for a coupled cluster 
approximation) improved, and, so, the potentially numerically ill-behaved remix- 
ing of these functions with the low-lying functions in the complement space does 
not destabilize the calculation. 

We develop an intermediate Hamiltonian formulation in terms of a double per- 
turbation theory, in which one of the perturbations is set to zero. Let P0 be the pro- 
jector onto the primary model space and P1 be the projector onto the buffer 
subspace. Instead of the unperturbed Hamiltonian of eq. (14), we now take 

Ho = PoHPo + P1HP1 + Q1HQ1 + Q2HQ2 + . . .  (24) 

and define 

and 

V(x l) = PoHQ + QHPo (25) 

V 0) = PIHPo + PoHP1 + Q1HQ2 + Q2HQ1 + . . .  , (26) 



358 K. Kuhler, M.R. Hoffmann / A nondiagonal quasidegenerate perturbation theory 

leaving 

V ]  ) = P1HQ + QHP1. (27) 

In eqs. (25) and (27), we used the unsubscripted complement space projector, Q, 
defined as, Q = Q1 + Q2 + Q3 + .... 

Our intermediate Hamiltonian is then developed by setting V(x a) equal to zero. 
The equations for the transitions elements (e.g., eq. (19)) are unchanged in struc- 
ture, but the range of the indices is reduced relative to the equations used for the full 
effective Hamiltonian. For example, eq. (19) is solved only for zero-order functions 
in the primary space and (~,nlG0)[q5 °) --- 0, for 1~o) E Px. Likewise, the summation 
in eq. (16) is reduced to be over only the primary subspace. Similar reductions in 
ranges of indices occur in the fourth-order equations and in coupled cluster (vide 
infra). 

4. Quasidegenerate coupled cluster 

The canonical variant of quasidegenerate perturbation theory was used in the 
finite order theories developed above. However, the particularly simple relation 
determining the correlation operator, X, in the intermediate normalized variant 
[13,25,26], 

[HD, X] = - Vx + X V x x ,  (28) 

makes this a more convenient starting point for developing an iterative solution. 
Without further modification, intermediate normalization yields a non-Hermitian 
effective Hamiltonian; so, we follow Kvasnicka [35] and use the Hermitian average. 
Our development of the coupled cluster approximation follows our perturbation 
treatment, other than the choice of normalization. In particular, the quasidegene- 
rate coupled cluster theory is developed completely within a Lie algebra and, so, is 
expected to be size-extensive [36] up to small errors introduced by use of an inter- 
mediate Hamiltonian. It should be noted that rigorously size-extensive intermedi- 
ate Hamiltonians have been formulated by Mukherjee and Kutzelnigg using a 
Fock space approach [37-39]. In the present, Hilbert-space, formulation, size- 
extensivity will depend on partitioning; however, a physically reasonable partition- 
ing is expected to give no or physically insignificant size-extensivity errors. 

In terms of the subspaces introduced above, the correlation operator may be 
written without approximation as 

X = PoxQ1 + Q1xPo + PoxQ2 + Q2xPo + . . .  

+ Q1xQ2 + Q2xQ1 + . . .  

-t- P1xQI + QIXP1 + P1xQ2 + Q2x P + . . . .  (29) 
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We define our coupled cluster excitation operator as the sum of operators capable 
of acting directly between the primary subspace of the model space and the first- 
and second-excited complement spaces; i.e., 

X cc - X O) + X (2) (30a) 

with 

and 

X (D =--- PoxQ1 + Q1xPo + Q1xQ2 + Q2xQI 

X (2) -- PoxQ2 + Q2xPo. 

(30b) 

(30c) 

Though an explicit representation (e.g., in terms of products of one-particle crea- 
tion and annihilation operators and basis function projectors) of X might be diffi- 
cult or impractical to obtain, the n-particle matrix elements can readily be 
calculated. Notice that the meaning of the superscripts are different in eq. (30) than 
in the previous sections; in particular, no sense of"perturbative order" is implied in 
eq. (30). 

A matrix representation of the correlation operator can be obtained by requiring 
that certain relations hold. One such requirement is that eq. (28) holds exactly for 
matrix elements between Q1 and 790 for the approximate correlation operator (cf. 
eq. (30)), 

(~.I[HD, X 0) + X(Z)llC'°a) = ( ' I ' l l -  Vx + X(1) Vxx  (1) @ X(2) Vxx(1)lCb°a). (31) 

Decoupling occurs by requiring that the relation between the second- and first- 
order subspace parts of the coupled cluster operator maintain the structure relating 
the second- and first-order perturbation corrections; i.e., 

[Ho, X (2)] = -IV., X(~)]. (32) 

Substituting eq. (32) into eq. (31) yields our working quasidegenerate coupled clus- 
ter equations for X 0), 

((~nlnl~m) - ~mnE~)(~mlx(1)l ~°) 
mEQi 

=-(o.IVxl¢°)- ~ ((b.IHlCm)(Omlx(2)lO°) 
mEQ2 

(~clVXX I~a). (33) + ~(~ lx (1 ) l~0c)  0 (,) 0 
c~P0 

It may be appreciated that the proposed theory is not "linearized". The X 0) excita- 
tion operator matrix elements appear on both sides of the equation; furthermore, 
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X(2) depends on X 0). Hence, the equations must  be iterated to self-consistency. As 
with our  four th-order  per turbat ion theory, the computat ional  effort  will be similar 
to that  o f  C I S D T Q  or C C S D T Q  treatments in molecular  physics. 

5. Application to coupled, anisotropic anharmonic oscillators 

In tables 1 and 2, we present the results of  calculations using our Q D P T  for two 
representative sets o f  parameters.  Table 2 also includes Q D C C  results; Q D C C  
results were omitted from table 1 as they were virtually indistinguishable f rom the 
exact values. "Exac t"  values were obtained from variational calculations suffi- 
ciently large such that increases in the basis set size no longer changed any repor ted 
digits. The first results columns of  the tables report  the energy correct  through first 
order; i.e., diagonalization of  the full Hamil tonian within the basis defining the 
quasidegenerate level. Compar ison of  the exact results with the first-order values 
gives the contr ibut ion to the total energy which originates f rom outside the quaside- 
generate level and, so, is the true test of  the per turbat ion method.  Resul ts  for sec- 
ond- and fourth-order  quasidegenerate per turbat ion theory and quasidegenerate 
coupled cluster theory are given as deviations f rom the exact result. Fo r  example, 
the Q D P T 2  result for the second root  of  the second level in table 1 is 
E (QDPT2)  = 2.237 466 - 5.9 x 10 -5 = 2.237407. 

Table 1 
Errors in calculated energies for 7 = 0.1, a/k = 0.1, b~ (k/32) = 0.05. 

Level Root E 1 Exact 6QDPT2 6QDPT4 

0 0 1.030 992 1.026 684 3.5 (-5) 1. (-6) 

1 0 1.923376 1.918 181 5.3 (-5) 1. (-6) 
1 2.262 574 2.237466 -5.9 (-5) 9. (-6) 

0 2.815813 2.809749 7.0(-5) 2. (-6) 
1 3.158 980 3.133 127 -6.3 (-5) 1.0 (-5) 
2 3.614050 3.533 270 -1.8 (-3) 1.4 (-4) 

0 3.708300 3.701387 8.6(-5) 3. (-6) 
1 4.055 362 4.028 756 -6.4 (-5) 1.1 (-5) 
2 4.512011 4.430401 -1.9 (-3) 1.5 (-4) 
3 5.087 963 4.902 882 -1.3 (-2) 1.9 (-3) 

0 4.600836 4.593092 1.0(-4) 3. (-6) 
1 4.951 723 4.924 356 -6.2 (-5) 1.1 (-5) 
2 5.409 959 5.327 517 -2.0 (-3) 1.6 (-4) 
3 5.986 656 5.800 718 -1.3 (-2) 2.0 (-3) 
4 6.685 124 6.337 723 -5.9 (-2) 1.7 (-2) 
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Table 2 
Errors in calculated energies for 7 = 0.1, a/k = 0.2, b/(k/32) = 0.2. 

361 

Level Root E 1 Exact 6QDPT2 6QDPT4 6QDCC 

0 0 1.123 967 1.086 936 6.3 ( -4)  1.2 ( -4)  5. ( -6)  

1 0 2.009 742 1.968 637 9.9 ( -4)  1.7 ( -4)  9. ( -6)  
1 2.734060 2.512 909 -1.1 (-2)  1.8 ( -3)  8.2 ( -5)  

2 0 2.895 658 2.850 645 1.3 ( -3)  2.2 ( -4)  1.6 ( -5)  
1 3.631 280 3.407259 -1.1 (-2)  2 .0( -3)  8 .2( -5)  
2 4.828433 4.150709 - 1 . 3 ( - 1 )  5.1 (-2)  5 .7( -4)  

3 0 3.781 709 3.732 940 1.7 ( -3)  2.8 (-4)  2.4 ( -5)  
1 4.528 396 4.301 396 -1.2 (-2)  2.3 (-3)  7.9 ( -5)  
2 5.727 352 5.046 982 -1.2 (-1)  5.3 ( -2)  5.5 ( -4)  
3 7.417 088 5.950 672 - - -7 .6  ( -5)  

0 4.667 889 4.615 502 2.0 ( -3)  3.4 ( -4)  3.3 ( -5)  
1 5.425 414 5.195 337 -1.2 (-2)  2.5 ( -3)  7.4 ( -5)  
2 6.626251 5.943 216 -1.2 (-1)  5.6 (-2)  5.2 ( -4)  
3 8.316 512 6.847 779 - - -2 .4  ( -4)  
4 10.501 125 7.884618 - - - 2 . 4 ( - 2 )  

All calculations reported in table 1 were performed with the full quasidegenerate 
space; i.e., the dimension of the buffer space was zero. The larger intruder state 
problem in the calculations reported in table 2 required the use of a nonzero buffer 
space for quasidegenerate level 3 and above. Table 2 supports the hypothesis that 
our implementation of intermediate Hamiltonians can obtain accUrate eigenvalues 
for some states even when perturbation theory fails for states too close to the intru- 
der states. The quasidegenerate coupled cluster calculations were seen to converge 
even for states that were required to be in the buffer space in perturbation theory 
calculations. 

We performed further analyses of data presented in tables 1 and 2 in order to 
understand better the effect of increasing energy eigenvalues. Table 3 presents per- 
centage error of data from table 1; likewise, table 4 presents further analyses of data 
from table 2. For all perturbation theory results, we see a gradual deterioration in 
accuracy within each quasidegenerate level, but essentially no change in relative 
accuracy of corresponding roots between levels. For example, using the QDPT4 
results, the second root of level 1 is in error by 0.81%; the errors of the second root 
of levels 2, 3, and 4 are 0.89%, 1.0%, and 1.1%, respectively. The coupled cluster 
results are similar, except for levels in which intruder states forced the use of a buf- 
fer space with the perturbation theory; in those levels, the QDCC results, while still 
accurate, had less systematic errors. 
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Table  3 
Percent  e r rors  in calculated energies for 7 = 0.1, a/k = O. 1, b/(kl32) = 0.05. 

Level R o o t  A E  % error  % er ror  
(QDPT2)  (QDPT4)  

0 0 0.037031 0.81 0.023 

1 0 0.005 195 1.0 0.019 
1 0.025 108 0.23 0.036 

4 

0 0.006 064 1.2 0.033 
1 0.025 853 0.24 0.039 
2 0.080 780 2.2 0.17 

0 0.006 913 1 2  0.043 
1 0.026 606 0.24 0.041 
2 0.081 610 2.3 0.18 
3 0.185081 7.0 1.0 

0 0.007 744 1.3 0.039 
1 0.027 367 0.23 0.040 
2 0.082 442 2.4 0.19 
3 0.185938 7.0 1.1 
4 0.347401 17. 4.9 

Table  4 
Percent  er rors  in calculated energies for-y = 0.1, a/k = 0.2, b/(kt32) = 0.2. 

Level R o o t  A E  % error  % er ror  % er ror  
(QDPT2)  (QDPT4)  ( Q D C C )  

0 0 0.037 031 1.7 0.32 0.014 

1 0 2.4 0.41 0.022 
1 5.0 0.81 0.037 

0.041 105 
0.221 151 

0 0.048 769 3.5 0.57 0.049 
1 0.227 000 5.3 1.0 0.035 
2 0.680 370 18. 7.8 0.081 
3 1.466 416 - - 0.0051 

0 0.052 387 3.8 0 . 6 5  0.063 
1 0.230 077 5.2 1.1 0.032 
2 0.683 035 18. 8.2 0.076 
3 1.468 733 - - 0.016 
4 2.616 507 - - 2.4 

0 0.045 013 2.9 0.49 0.036 
1 0.224 021 4.9 0.89 0.037 
2 0.677 724 19. 7.5 0.084 
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6. Summary 

A partitioning of the Hamiltonian by number of mappings from a subspace of 
interest has been introduced in a canonical Rayleigh-Schr6dinger quasidegenerate 
perturbation theory. Tractable equations through fourth order have been explicitly 
presented. An intermediate Hamiltonian, based on a double perturbation, was 
introduced to screen especially problematic states of the subspace of interest. 
Numerical studies on coupled anisotropic anharmonic oscillators have shown high 
accuracy, even in the presence of small eigenvalue splittings between the subspace 
of interest and the adjoining region. A quasidegenerate coupled cluster method 
based on an intermediate normalization quasidegenerate perturbation theory was 
introduced and shown to give excellent results when perturbation series were con- 
vergent and useful results even in the presence of true intruder states. 
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