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A canonical quasidegenerate Rayleigh-Schrodinger perturbation theory, correct
through fourth order in the energy, is explored for a block-diagonal unperturbed
Hamiltonian. The theory is developed completely within a Lie Algebra in Hilbert space.
Explicit equations for n-particle transition elements in terms of solutions of simultaneous
linear equations are presented. A two-dimensional anisotropic anharmonic oscillator is
used to provide numerical results. The perturbation theory is shown to be stable under
small separation of model and complement spaces. An iterative variant of the fourth-
order perturbation theory is introduced; the iterative variant is related to the non-itera-
tive one in much the same way as nondegenerate coupled cluster theories are related to
nondegenerate perturbation theory. The quasidegenerate coupled cluster theory appears
to be stable in the presence of multiple intruder states.

1. Introduction

The realization of ever more efficacious approximation methods for solutions
of the time-independent Schrodinger equation remains an important goal in the
physical sciences. Quasidegenerate perturbation theories (QDPT), including itera-
tive approximations of the coupled cluster variety, remain an especially lucrative
methodology. For recent reviews of QDPT, see refs. [1] and [2]. Quasidegenerate
perturbation theories have been developed and successfully applied to a number of
problems in nuclear [3-6], atomic [7-9] and molecular [10-20] physics.
Nonetheless, difficulties remain with routine application of QDPT, especially with
the ability to describe reliably excited states and to treat weakly quasidegenerate
systems on an equal footing with strongly quasidegenerate systems.

In this paper, we present a nondiagonal Rayleigh-Schrodinger QDPT correct
through fourth order in the effective Hamiltonian that uses a novel intermediate
Hamiltonian to avoid numerical instabilities due to so-called intruder states [3].
The matrix formulation is described herein; i.e., explicit equations are given in
terms of n-particle transition amplitudes. Aniterative approximation to the fourth-
order effective Hamiltonian, that is similar to the relation that nondegenerate
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coupled cluster methods have to nondegenerate perturbation theory, is also pre-
sented. We investigate numerically characteristics of the proposed theories with
calculations on coupled, anisotropic anharmonic Hamiltonians of the form

H(x,y) =1p2 +1p2 + 1k, 52 + 1,97 + axp + b3*, (1)

which may also, in coordinate representation, be written as

H(&,n):h«u{l<1-+-v>(a22 +2)+ 1(1—)(§+n2)

a 1 . 1 b \.4
T T (&) } 2

The anisotropy, 7, and mean force constant, k, are defined through k, = k(I + 7)*
and k, = k(I - ) the unit of energy is defined through the mean frequency

=4 /k m. The length scales are defined by 32 = Vk.m/Hh, ,6 Vk,m/h, and
* = Vkm/H; the scaled coordinatesare £ = fyxandn = §,y. '

Quasidegenerate methods are based on the observation that an exact eigenfunc-
tion of the Hamiltonian can be generated from a reference function in a subspace of
the full Hilbert space by the action of a wave operator [21],

[Wa) = Q&) . (3)

The domain of the wave operator partitions Hilbert space into two subspaces: the
model space and its orthogonal complement. The relation of the model space wave-
function and the exact wavefunction given in eq. (3) implies a similarity transfor-
mation of the Hamiltonian; i.e.,

HY = 'HQ. | (4)

The effective Hamiltonian acts on a function in the model space to produce the
exact energies,

HY\|®,) = E,|®,) . (5)

The reference functions of egs. (3) and (5) have been referred to as the “‘bonne func-
tions” (cf. refs. [22-24]). The bonne functions are, of course, expressible as a linear
combination of model space basis functions: |®,) = 3, C2|®,).

Eq. (4) may be rewritten as

QOHY = HQ. (6)

In order to solve the above equation, it is convenient to introduce the projector on
the model space,

P= Zlq)a><@a] (7)

acP



K. Kuhler, M. R. Hoffmann / A nondiagonal quasidegenerate perturbation theory 353

and the projector on the complement space,
Q=" 12:)(24]. (8)
neQ

The summation in eq. (7) is over the d-dimensional subspace P of Hilbert space that
is used to define the model space; in eq. (8), the summation is over all of Hilbert
space complementary to subspace P. As demonstrated by Shavitt and Redmon [13]
(also seerefs. [23,24]), eq. (6) rearranges to

HpQy = —HxﬂD-FQngf, (9)

where the block diagonal and off-diagonal parts of the Hamiltonian and wave
operator have been defined by

Ap = PAP + QAQ (10a)
and %
Ay = PAQ + QAP. (10b)

Eq. (9) may be considered the fundamental equation for developing any effective
Hamiltonian.

2. Quasidegenerate perturbation theory

Several major variants of QDPT have been defined [13,25,26}]; our development
is of the canonical formulation variety. The canonical formulation is most conveni-
ently expressed in terms of the logarithm of the wave operator,

[T, = ef|®,) . : (11)

The canonical variant of QDPT is defined by the requirement that the block diago-
nal part of the logarithm of the wave operator vanish, i.e., Gp =0, and that

Gy = ~Gt. The logarithm of the wave operator and the effective Hamiltonian may
be expanded as power series, i.e.,

G=GY+GY 4G9+ ... (12)
and

HY —Hy+ Wl + w@ +w +wd + ... (13)

Substituting the perturbative series into eq. (9) and using a power expansion of e¢
yields the individual order perturbation equations[13].

Our nondiagonal quasidegenerate perturbation theory is developed from an
unperturbed Hamiltonian with the following structure:

Hy=PHP + Q1HO1 + O2:HO, + ... . (14)
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Ineq. (14) the complement space, @, is further partitioned by the minimum number
of mappings that a set of functions are removed from the model space; for example,
for any function, |®,,), in the Q, subspace and function |®,) in P, (®,|H|®,,) = 0.
Fig. 1 illustrates the structure of the Hamiltonian, with crosshatched regions
included in Hjy, striped regions containing potentially nonzero matrix elements,
and all blank regions rigorously zero. A perturbative evaluation of the eigenvalues
and model space eigenvectors of the Hamiltonian may now be developed from the
above specified Hj.

Computational implementation of the proposed quasidegenerate perturbation
theory could be realized through explicit formulas involving model space matrix
elements of products of creation and annihilation operators, or, equivalently, by
diagrammatic techniques. An alternative approach is the matrix formulation
[12,21]: the required transition matrix elements of G(!) can be obtained as

> (Bl H @) (| G| Ba) — Y (|G |@.) (D | H| Do)

c

= — (B4 |H|2.) . (15)

The first summation is over the set of all, the previously discussed, no-more-than-
singly-excited basis functions (Q,); the second summation is over all model space
functions. The set of necessary bra functions, |®,), is a basis of Q;.

The second-order correction to the effective Hamiltonian can be expressed
directly in terms of the G(") matrix elements from eq. (15) and Hamiltonian matrix
elements,

P\i\\

N

%, /// s\

1 74

e
Y |

Fig. 1.
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(@l W) |®s) = L@l [Hx, G)|®5)
=13 (@l H|24) (24| GV |@p) — (2]GD| D) (D] H|Ds)} -
d

(16)

In eq. (16), the summation is restricted, without approximation, to complement
space basis functions that are no-more-than-singly excited relative to either model
space function |®,) or | ;).

Though our complement space basis functions are not eigenfunctions of Hy, it
proves convenient to rotate our basis in the model space so that the model space
basis functions are eigenfunctions of Hy:

Ho|®;) = E,;|®)) . : (17)
The diagonal part of the Hamiltonian is related to the zero-order Hamiltonian by
Hp=Hy+ Vp, (18)

where Vp = Q1HQ> + Q2HQ, + .. .. Hence, Hy and H)p are identical in the model
space, but not in the complement space. With the rotated basis in the model space,
eq. (15) takes on the simpler, and more computational tractable, form,

Y (@nlH|Bm) = 6mnEy) (8| GV|25) = —(24|H|EY) . (19)

meg,

Neither eq. (16) nor (19) is surprising, and may be seen to be essentially multirefer-
ence CEPA-0 equations [15,27,28]. While the purpose of the present work is to
develop higher-than-second-order, nondiagonal, perturbation theories, it ought to
be noted that substantial improvements in accuracy can be achieved in second
order by more sophisticated treatments [29-32].

The equations for the second-order correction to the logarithm of the wave

operator, G, are developed similarly to the first-order correction. One
obtains
> (@alH|®m) — bmnEy) (21| GP|2Y)
meg,
= = 3 (@al H|k) (2] G 29, (20)
ke@)

where the |®,) € Q,. However, one also obtains the result that the third-order cor-
rectlon to the effective Hamiltonian is rigorously zero with our partitioning, i.e.,

(@Y WD [@0) = 0. It ought to be noted that the second-order correction to thc
wavefunction is not equal to zero and, if calculation of fourth- or higher-order cor-
rections to the effective Hamiltonian are required, the second-order corrections to
the wavefunction must be calculated. Eq. (20) represents a substantial computa-



356

K. Kuhler, M. R. Hoffmann / A nondiagonal quasidegenerate perturbation theory

tional effort comparable to configuration interaction CISDTQ or coupled cluster
CCSDTQ[33] approaches to molecular physics problems.
Evaluation of the equation for the third-order correction to the wave operator

in a basis gives

Z (((I)anI(I)m> - 6mE;)<‘I)M|G(3)[(I)2>
meQ ®&¢
== > (®ulVD|2,)(2,|G| )
geQ;
—‘Z(q’ |H|DY) Y (RGN | B} (2| G| DY)
CG'P meg@,
+3 Z(@ 1GW120) > (B0|H|@m) (|G |2T)
CE’P megQ;
——Z (@61 120) > (201G |®m) (2| H|DY) . (21)
ceP megQ,

The summation over complement space functions on the left hand side are rigor-
ously over the union of Q; and Qs subspaces. The (®,| are also rigorously restricted
to the union of Q; and Q3 subspaces; consequently, the above simultaneous equa-
tions decouple into Q; ® Q; and Q3 ® Q3 blocks. Model space matrix elements of
the fourth-order correction to the effective Hamiltonian

1
W) =2 1Hx, GP) - 52 [1Hx, ), 61, 6 (@)

can be written, after some algebra, as

4
(@0 Wy |18)

-Z{ (@ H|25)(Pm| G| @D) + (@] GO 20) (1| H| ) }

mEQl

o S BUWDIE T (@160 (@61 29)

ceP meg

s S @UWIEY 3 (@160 (@160
ceP meg,

1

+ 5 D (@mlGMBY) Y (8| GMIDY) S (4| HIBY) (84| GM| D))

megQ, ceP ke@
Z (Bm|GV|DD) D (Bm|GV[B) D (D H|B) (B |GV |BY) .
mEQ\ ceP keQ,

(23)

Examination of eq. (23) shows that the Q3 matrix elements of G® are not needed
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in fourth order in the effective Hamiltonian; hence, only solution of the Q; ® Q,
block of eq. (21) is required.

3. Intermediate effective Hamiltonians

The concept of partitioning an effective or model Hamiltonian further into a sub-
space of interest and one that is uninteresting for the problem at hand has been pro-
posed already by Lowdin [21]. This partitioning often can alleviate the intruder
state problem [3]; intruder states are states outside the model space that have energy
eigenvalues within the range of those of the model space. Partitioning has also pro-
ven to be computationally efficacious; the most computationally intensive parts of
the construction of the effective Hamiltonian is then limited to the usually small pri-
mary block. Partitioning has been used in several formulations of quasidegenerate
or multireference perturbation theories [8,14,34]. Malrieu and Daudey [8] intro-
duced a form of partitioning in which m exact energies and projections of m exact
eigenvectors of the d-dimensional model space are obtained at convergence; though
their introduction of the phrase intermediate Hamiltonian originally referred to
their particular form of partitioning, it has now found more general use. The inter-
mediate Hamiltonian we propose for use with our quasidegenerate perturbation
and coupled cluster theories is not of the Malrieu and Daudey type, and may be seen
to be closer to that produced by the buffer space of Kirtman [14].

Our intermediate Hamiltonian is constructed by further division of the model
space functions into a so-called primary subspace, Py, whose eigenvalues and
eigenvectors are of interest, and a buffer subspace, P,, that is not of any particular
interest. With a proper choice of primary states, the energetically high-lying func-
tions in the model space are not perturbatively (or iteratively, for a coupled cluster
approximation) improved, and, so, the potentially numerically ill-behaved remix-
ing of these functions with the low-lying functions in the complement space does
not destabilize the calculation.

We develop an intermediate Hamiltonian formulation in terms of a double per-
turbation theory, in which one of the perturbations is set to zero. Let Py be the pro-
jector onto the primary model space and P, be the projector onto the buffer
subspace. Instead of the unperturbed Hamiltonian of eq. (14), we now take

Hy = PyHPy + PLHPy + Q1HQ + Q2HOy + ... (24)
and define

V{) = P)HQ + QHP, (25)
and

v\) = Pl HPy + PoHPy + Q1HO2 + Q2HO: + ..., (26)
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leaving

v = pHQ + QHP, . (27

In egs. (25) and (27), we used the unsubscripted complement space projector, Q,
definedas, Q=01+ + Q03+ .. ..

Our intermediate Hamiltonian is then developed by setting V,((2 ) equal to zero.
The equations for the transitions elements (e.g., eq. (19)) are unchanged in struc-
ture, but the range of the indices is reduced relative to the equations used for the full
effective Hamiltonian. For example, eq. (19) is solved only for zero-order functions
in the primary space and (®,|G()|®2) = 0, for |®)) € P,. Likewise, the summation
in eq. (16) is reduced to be over only the primary subspace. Similar reductions in
ranges of indices occur in the fourth-order equations and in coupled cluster (vide

infra).

4. Quasidegenerate coupled cluster

The canonical variant of quasidegenerate perturbation theory was used in the
finite order theories developed above. However, the particularly simple relation
determining the correlation operator, X, in the intermediate normalized variant
[13,25,26],

[Hp,x] = —Vx +xVxx, (28)

makes this a more convenient starting point for developing an iterative solution.
Without further modification, intermediate normalization yields a non-Hermitian
effective Hamiltonian; so, we follow Kvasnicka [35] and use the Hermitian average.
Our development of the coupled cluster approximation follows our perturbation
treatment, other than the choice of normalization. In particular, the quasidegene-
rate coupled cluster theory is developed completely within a Lie algebra and, so, is
expected to be size-extensive [36] up to small errors introduced by use of an inter-
mediate Hamiltonian. It should be noted that rigorously size-extensive intermedi-
ate Hamiltonians have been formulated by Mukherjee and Kutzelnigg using a
Fock space approach [37-39]. In the present, Hilbert-space, formulation, size-
extensivity will depend on partitioning; however, a physically reasonable partition-
ingis expected to give no or physically insignificant size-extensivity errors.

In terms of the subspaces introduced above, the correlation operator may be
written without approximation as

x = Pox Q1 + Q1xPo + PoxQ2+ QaxPo+ ...

+ Oix02+ Qax Q1 + ...
+ Pix01 + QixP1 + Pix0r+ QoxP+.... (29)
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We define our coupled cluster excitation operator as the sum of operators capable
of acting directly between the primary subspace of the model space and the first-
and second-excited complement spaces; i.e.,

X = xW + x®? (30a)
with '

XM = Pox Q1 + QixPo + Q1x Q2 + Q2x 0 (30b)
and

x? = Pox 02 + QaxPo. (30c)

Though an explicit representation (e.g., in terms of products of one-particle crea-
tion and annihilation operators and basis function projectors) of x might be diffi-
cult or impractical to obtain, the n-particle matrix elements can readily be
calculated. Notice that the meaning of the superscripts are different in eq. (30) than
in the previous sections; in particular, no sense of ““perturbative order” is implied in
eq. (30).

A matrix representation of the correlation operator can be obtained by requiring
that certain relations hold. One such requirement is that eq. (28) holds exactly for
matrix elements between Q; and P, for the approximate correlation operator (cf.

eq. (30)),
(@l [Hp, xV + xP)|80) = (®a] — Vi + xVxx® + xPVexV|)) . (31)
Decoupling occurs by requiring that the relation between the second- and first-

order subspace parts of the coupled cluster operator maintain the structure relating
the second- and first-order perturbation corrections;i.e.,

[Ho, x®] = —[Vp,x"]. (32)

Substituting eq. (32) into eq. (31) yields our working quasidegenerate coupled clus-
ter equations for x{!

Y (@nlH|®m) — 6mnEg){mlx ™| 25)

meQ,
= _<(I)anX|®2) - Z (q)n[H|@m>(‘I)m‘X(2)lq)2>
meQ;
+ 3 (@l 192) (22 Vx| D) - (33)

cePy

It may be appreciated that the proposed theory is not “linearized”. The xD excita-
tion operator matrix elements appear on both sides of the equation; furthermore,
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x@ depends on x(!). Hence, the equations must be iterated to self-consistency. As
with our fourth-order perturbation theory, the computational effort will be similar
to that of CISDTQ or CCSDTQ treatments in molecular physics.

5. Application to coupled, anisotropic anharmonic oscillators

In tables 1 and 2, we present the results of calculations using our QDPT for two
representative sets of parameters. Table 2 also includes QDCC results; QDCC
results were omitted from table 1 as they were virtually indistinguishable from the
exact values. “Exact” values were obtained from variational calculations suffi-
ciently large such that increases in the basis set size no longer changed any reported
digits. The first results columns of the tables report the energy correct through first
order; i.e., diagonalization of the full Hamiltonian within the basis defining the
quasidegenerate level. Comparison of the exact results with the first-order values
gives the contribution to the total energy which originates from outside the quaside-
generate level and, so, is the true test of the perturbation method. Results for sec-
ond- and fourth-order quasidegenerate perturbation theory and quasidegenerate
coupled cluster theory are given as deviations from the exact result. For example,
the QDPT2 result for the second root of the second level in table 1 is
E(QDPT2) = 2.237 466 — 5.9 x 10~° = 2.237407.

Table 1

Frrorsin calculated energies fory = 0.1, a/k = 0.1, 5/(kG?) = 0.05.

Level Root E! Exact SQDPT2 SQDPT4

0 0 1.030992 1.026 684 3.5(=5) 1. (=6)

1 0 1.923376 1.918 181 5.3(-5) 1. (—6)
1 2.262574 2.237466 ~5.9(-5) 9. (—6)

2 0 2.815813 2.809 749 7.0 (-5) 2. (—6)
1 3.158980 3.133127 —6.3(=5) 1.0 (-5)
2 3.614050 3.533270 ~1.8(-3) 1.4 (~-4)

3 0 3.708 300 3.701387 8.6 (-5) 3. (-6)
1 4.055362 4.028 756 ~6.4(-5) 1.1(-5)
2 4.512011 4.430401 -1.9(-3) 1.5(—4)
3 5.087963 4.902882 ~1.3(=2) 1.9 (-3)

4 0 4.600836 4.593092 1.0 (—4) 3. (—6)
1 4.951723 4.924356 —-6.2(-5) 1.1 (-5)
2 5.409959 5.327517 -2.0(-3) 1.6 (—4)
3 5.986 656 5.800718 ~1.3(=2) 2.0(-3)
4 6.685124 6.337723 ~5.9(-2) 1.7(-2)
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Table 2

Errors in calculated energies for v = 0.1, a/k = 0.2, b/ (k?) = 0.2.

Level Root E! Exact 5QDPT2 §QDPT4 §QDCC

0 0 1.123967 1.086936 6.3(—4) 1.2(-4) 5. {(—6)

1 0 2.009 742 1.968 637 9.9(—4) 1.7(-4) 9. (-6)
1 2.734 060 2.512909 -1.1(-2) 1.8(~3) 8.2(-5)

2 0 2.895658 2.850 645 1.3(-3) 2.2(-4) 1.6 (-5)
1 3.631280 3.407259 -1.1(-2) 2.0(-3) 8.2(-5)
2 4.828433 4.150709 -13(-1) 5.1(-2) 5.7(—4)

3 0 3.781709 3.732940 1.7(-3) 2.8(—4) 2.4(-5)
1 4.528 396 4.301 396 -1.2(-2) 2.3(-3) 7.9 (—5)
2 5.727352 5.046 982 -12(-1) 5.3(-2) 5.5(~4)
3 7.417088 5.950672 - - -7.6(-5)

4 0 4.667 889 4.615502 2.0(-3) 3.4(—4) ©3.3(-5)
1 5.425414 5.195337 ~1.2(-2) 2.5(-3) 7.4(-5)
2 6.626251 5.943216 -12(-1) 5.6(-2) 5.2(—4)
3 8.316512 6.847779 - - ‘ —24(-4)
4 10.501125 7.884 618 - - -2.4(-2)

All calculations reported in table 1 were performed with the full quasidegenerate
space; i.e., the dimension of the buffer space was zero. The larger intruder state
problem in the calculations reported in table 2 required the use of a nonzero buffer
space for quasidegenerate level 3 and above. Table 2 supports the hypothesis that
our implementation of intermediate Hamiltonians can obtain accurate eigenvalues
for some states even when perturbation theory fails for states too close to the intru-
der states. The quasidegenerate coupled cluster calculations were seen to converge
even for states that were required to be in the buffer space in perturbation theory
calculations.

We performed further analyses of data presented in tables 1 and 2 in order to
understand better the effect of increasing energy eigenvalues. Table 3 presents per-
centage error of data from table 1; likewise, table 4 presents further analyses of data
from table 2. For all perturbation theory results, we see a gradual deterioration in
accuracy within each quasidegenerate level, but essentially no change in relative
accuracy of corresponding roots between levels. For example, using the QDPT4
results, the second root of level 1 is in error by 0.81%; the errors of the second root
of levels 2, 3, and 4 are 0.89%, 1.0%, and 1.1%, respectively. The coupled cluster
results are similar, except for levels in which intruder states forced the use of a buf-
fer space with the perturbation theory; in those levels, the QDCC results, while still
accurate, had less systematic errors.
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Table 3
Percent errors in calculated energies for v = 0.1,a/k = 0.1, b/(k3?) = 0.05.
Level Root AE Yo error Yoerror
(QDPT2) (QDPT4)
0 0 0.037031 0.81 0.023
1 0 0.005 195 1.0 0.019
1 0.025 108 0.23 0.036
2 0 0.006 064 1.2 0.033
1 0.025853 0.24 0.039
2 0.080 780 22 0.17
3 0 0.006913 1.2 0.043
1 0.026 606 0.24 0.041
2 0.081610 23 0.18
3 0.185081 7.0 1.0
4 0 0.007 744 1.3 0.039
1 0.027 367 0.23 0.040
2 0.082442 24 0.19
3 0.185938 7.0 1.1
4 0.347 401 17. 49
Table 4
Percent errors in calculated energies for v = 0.1, a/k = 0.2, b/ (k3?) = 0.2.
Level Root AE % error Y error % error
(QDPT2) (QDPT4) (QDCC)
0 ] 0.037 031 1.7 0.32 0.014
1 0 0.041105 2.4 0.41 0.022
1 0.221 151 5.0 0.81 0.037
2 0 0.045013 2.9 0.49 0.036
1 0.224021 4.9 0.89 0.037
2 0.677 724 19. 1.5 0.084
3 0 0.048 769 35 0.57 0.049
1 0.227 000 5.3 1.0 0.035
2 0.680370 18. 7.8 0.081
3 1.466416 - - 0.0051
4 0 0.052 387 38 0.65 0.063
1 0.230077 5.2 1.1 0.032
2 0.683035 18. 8.2 0.076
3 1.468733 - - 0.016
4 2.616507 - - 24
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6. Summary

A partitioning of the Hamiltonian by number of mappings from a subspace of
interest has been introduced in a canonical Rayleigh-Schrodinger quasidegenerate
perturbation theory. Tractable equations through fourth order have been explicitly
presented. An intermediate Hamiltonian, based on a double perturbation, was
introduced to screen especially problematic states of the subspace of interest.
Numerical studies on coupled anisotropic anharmonic oscillators have shown high
accuracy, even in the presence of small eigenvalue splittings between the subspace
of interest and the adjoining region. A quasidegenerate coupled cluster method
based on an intermediate normalization quasidegenerate perturbation theory was
introduced and shown to give excellent results when perturbation series were con-
vergent and useful results even in the presence of true intruder states.
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